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Abstract. We present a systematic and formal approach toward finding solitary wave 
solutions of non-linear evolution and wave equations f r cn  the real exponential solutions 
of the underlying linear equations. The physical concept is one of the mixing of these 
elementary solutions through the non-linearities in the system. In the present paper the 
emphasis is, however, on the mathematical aspects, i.e. the formal procedure necessary to 
find single solitary wave solutions. By means of examples we show how various cases of 
pulse-type and kink-type solutions are to be obtained by this method. An exhaustive list 
of equations so treated is presented in tabular form, together with the particular intermediate 
relations necessary for deriving their solutions. We also outline the extension of our 
technique to construct N-soliton solutions and indicate connections with other existing 
methods. 

1. Introduction 

In an earlier paper (Hereman er a1 1985) we presented a physical approach to 
constructing solitary wave solutions of non-linear evolution and wave equations from 
the mixing of the real exponential travelling wave solutions of the underlying linear 
equation. This was motivated by the knowledge of the nature of the final closed form 
solution, which can be expanded into an infinite series of the harmonics of the real 
exponential solution( s) of the linear dispersive system. The feasibility of this approach 
lies in the fact that, in a mathematical sense, it is far simpler to ‘mix’ real exponentials 
rather than harmonic functions built up from imaginary exponentials, which, inciden- 
tally, are also solutions of the linear system. 

The present paper develops a more mathematically rigorous and systematic pro- 
cedure for deriving solitary wave solutions of various non-linear partial differential 
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equations (PDES), while still not losing track of the physical concepts (evolution by 
mixing of linear solutions) which were the essence of our earlier paper. In other words 
we want to off er a physically transparent straightforward step-by-step technique-along 
with necessary justifications for every step-for constructing single solitary wave 
solutions relevant to applications in various areas of physics and engineering. In this 
regard, the present paper supplements the heuristic approach for deriving such non- 
linear dispersive equations (Korpel and Banerjee 1984) in the sense that it enables the 
researcher to examine the final solution for applicability as well as to assess whether 
or not his particular system is likely to exhibit travelling solitary wave behaviour. 

We do not claim that the formal mathematical aspects of our treatment have never 
been proposed before. However, we do believe that our physical interpretation 
(although, of course, implicit in the mathematics) is novel. What is perhaps more 
important, we find that it greatly aids in understanding the problem in terms of the 
physical phenomena the engineer/scientist is familiar with. 

As regards formal mathematical approaches, Sawada and Kotera (1974), Rosales 
(1978), Whitham (1979), Wadati and Sawada (1980a, b) and Hickernell (1983) have 
all employed a perturbation technique. Their methods lead, after some tedious algebraic 
manipulations, to the known N-solitary wave solutions of, for instance, the KdV, mKdV, 

Burgers and Boussinesq equations. Their iterative procedures are closely linked to 
Hirota’s direct method (Hirota 1980) for finding multisoliton solutions, and to the 
summation procedure of the Pad6 type described by Turchetti (1980) and Liverani 
and Turchetti (1983). Rigorous mathematical analyses of the problem of direct lineari- 
sation of non-linear PDES have recently been presented by Taflin (1983) and Santini 
et a1 (1984). Poppe (1983, 1984) has used the Fredholm determinant method in a new 
and rigorous way to investigate soliton equations and to construct their solutions. 
Poppe, Rosales, and Wadati and Sawada point out the connection between their 
techniques and, for instance, the Backlund transformation technique (Miura 1976) 
and the inverse scattering method (Ablowitz and Segur 1981) focusing on a novel 
derivation of the Gel’fand-Levitan-MarEenko equations.. The mathematical formula- 
tion (though not the interpretation) of Korpel’s real exponential approach (Korpel 
1978), from which we derive o y  method, is closely related to the Rosales’ perturbation 
technique and the trace method of Wadati and Sawada (1980a, b). The reader, however, 
should bear in mind that the word ‘perturbation’ is a misnomer since, e.g., Rosales’ 
technique not only leads to exact solutions, but it essentially implies the principle of 
harmonic generation and mixing starting out from real exponential solutions of the 
linear equation, as explicitly assumed in Korpel’s approach. 

In Q 2 we discuss the general solution method itself to develop closed-form single 
solitary wave solutions of the pulse or kink types which may have a constant in their 
expansion into real exponentials. Throughout this section we formalise the procedure 
and give elaborate guidelines for solving the recursion relations that occur. 

In 0 3 we exemplify our technique by first applying it to the mKdV equation. We 
then treat the K d v  equation with an additional fifth-order dispersion term (already 
mentioned by Zabusky (1967)). This example shows how to proceed in the case of 
multiple solutions of the linear equation. Thirdly, we deal with the non-linear Klein- 
Gordon equation and show how the extension of the technique leads to both the 
pulse-type and the kink-type solutions. 

We furthermore find a kink-type solution of the sine-Gordon equation (Poppe 
1983) by first decomposing it into a coupled non-linear system and employing the real 
exponential approach. This is done with the intention of exemplifying the applicability 
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of our technique to coupled systems in general. Alternatively, the sine-Gordon equation 
may also be solved by transforming it to the non-linear Klein-Gordon equation (Gibbon 
et a1 1978). 

In 0 4 we briefly mention other equations solved by our fairly simple method, 
providing appropriate references for comparison purposes, and tabulating the results 
obtained so far. 

In 0 5 ,  we extend our concept of evolution by mixing of linear solutions to construct 
N-soliton solutions using the Kdv equation as an illustrative example. We furthermore 
indicate the connections between our approach and the perturbation technique of 
Rosales (1978) and Whitham (1979) and the trace method of Wadati and Sawada 
(1980a, b). 

Finally, we discuss some outstanding questions and outline the work in progress 
and areas of future investigations. 

2. The solution method 

In this section we present the details of the general solution method for exactly solving 
non-linear evolution and wave equations (as outlined by Hereman et al(1985)) leading 
to mainly hyperbolic-type solitary waves. 

The method, which is straightforwardly applicable, goes in the following ten steps. 
(a) Starting from the non-linear equation in 1 + 1 dimensions with x and t as the 

space and time coordinates respectively, we introduce a travelling frame of reference 
by ( = x -  ut. This transforms the given non-linear PDE in U ( X ,  t )  into an ODE in 
+(() A U ( X ,  t ) .  Note that U is the constant anticipated velocity of the travelling wave 
solution dependent on the wave amplitude, as we shall see later. 

(b) We next integrate the ODE with respect to 6, as many times as possible, but 
avoiding integral equations. For example, for evolution equations of the type 

U, = f ( u ,  U,, UZX,.  * .  , U n z ) ,  n E N, (1) 

where U ,  = & / a t ,  U,, = #"' /axn, the maximum permissible number of integrations is 
1. Similarly, for wave equations containing a second derivative in time, the number 
of integrations may not exceed 2. For reasons that will be explained in step (d),  we 
only leave in the integration constant of the last integration. 

(c) To obtain the most general solitary wave solution, possibly having a constant 
( d e )  term c1 in its expansion into real exponentials, we substitute 

c#J=c,+$ (2) 

into the non-linear equation for 4. 
(d)  We now consider the linear part of the resulting equation in $, by setting the 

coefficient(s) of the non-linear term(s) equal to zero or simply neglecting them. In 
our search for solitary wave solutions, we are motivated to look for solutions of the 
linear equation of the form exp[ -K  (U)(], where K ( U )  is a real function of U. Substitu- 
tion of this exponential function in the linear equation yields, in general, an equation 
of the form f ( K )  = 0, where f( K )  is a polynomial in K. The solution of this equation 
leads to a solution set {K,(u)(p = 1 , .  . . , MI and requires the constant term in the 
linear equation to be equal to zero. This, of course, imposes certain conditions on c1 
as well as on the integration constant. 
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For non-dissipative evolution and wave equations, i.e. for which the dispersion 
relation o = W (  k), expressing the angular frequency o as a function of the wavenumber 
k, is a real odd function of k (Korpel and Banerjee 1984), the polynomial for K will 
only have terms with even powers, so that if Ki( U) > 0, i = 1, . . . , N, is a solution, then 
- K i (  U )  is also a solution, with M = 2 N. In other words, for every decaying exponential 
in the set, there is a rising exponential. On the other hand, for equations containing 
dissipative terms, e.g. the Burgers equation (Whitham 1974), this is no longer true. 
Only one real solution for K will then exist for the linear part of the equation. 

We can now define { g p ( t )  A exp( -K,,t): p = 1,. . . , M }  to be the set of 'fundamental' 
functions, which we will use to arrive at the closed form solution of the given non-linear 
equation. 

For non-dissipative equations M is an even number, say 2N, and one has only to 
use one type of exponential (i.e. the decaying ones or the rising ones) (Hereman et 
a1 1985). 

In all the examples for non-dissipative equations given in Q 3, we work with the N 
decaying exponentials, labelled as g,, . . . , g ,  and corresponding to the first N functions 
of K p  defined to be positive. For dissipative equations there is no such choice; we 
have to use all M linear solutions. 

(e) For the sake of mathematical convenience, we may normalise a few coefficients 
of the non-linear terms by a simple scaling transformation of 6 into 6. 

(f) We now have to solve the non-linear equation in 6. As explained in a previous 
paper (Hereman et a1 1985), the solution to non-dissipative equations could be explicitly 
expressed in the form 

(4, n 2 , .  . . , niv) # (090, * .  . ,O). 

However, in most non-dissipative cases having N > 1, it appears possible to deter- 
mine the highest common factor K of the set { K p :  p = 1, .  . . , N }  defined by 

K K p /  M p  p = l ,  . . . ,  N, ( 5 )  

where Mp is a positive integer, enabling 6 to be re-expressed as 

with 

g ( t )  A exp(-Kt). (7) 
This will become clear through the example in P 3.2. Note that for dissipative equations 
(3)-(5) may still be used, provided N is replaced by M. 

(g) We next substitute (6) with (7) into the reduced non-linear equation which, in 
general, will contain non-linear and dispersion and/or dissipation terms of arbitrary 
order and degree. Linear terms in the reduced equation may be expressed in the form 
B:=, P(n)a ,gn ,  where the degree A of the polynomial P(n) equals the highest order 
of dispersion (or dissipation) minus the number of integrations carried out in step (b). 
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The structure of P(n)  may be readily derived by examining terms of the form 
&( LJ E N )  which give rise to terms of the form n4 in the polynomial P( n). This will, 
once again, become clear through the examples in 0 3. 

To deal with the non-linear terms, we need to employ the extension of Cauchy's 
(product) rule (Gradshteyn and Ryzhik 1980) for multiple series. 

Lemma 1 (extension of Cauchy's product rule). I f  
m 

F ( i ) P  C f;i) ( i = l ,  . . . ,  Z) 
n , = l  

represents Z infinite convergent series then 

Roo$ Applying Cauchy's rule to the product of F ( ' )  and F"' we get 

m = 2  I = 1  

m 

A h',Z' (11) 
m = 2  

where, in ( l l ) ,  we have re-expressed the double product in a single series in order to 
re-apply Cauchy's rule. This yields 

p = 3  m = 2  

p = 3  m - 2  1 = 1  

Proceeding step by step as above, we finally obtain (9). 

For our purposes, we have to apply (9) to multiple products of 6 and its derivatives 
with respect to 5. Using ( 6 )  and (7) ,  it is clear that for 

;o 

F") = Jsr = ( - K ) ¶  n 4 a n t g " ~ ( ~ ) ,  4 E V  (14) 
n , = l  
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- -  - 
a typical non-linear term, for instance 44i42s, may be expanded as 
-.. - - - 
442426 = 44s4g42s 

m n - l  k - 1  m-1 

= ( - K ) 4  1 1 I o ( m - I ) ’ ( k - m ) ’ ( n - k ) 2 a l a m - ~ a k - m a n - k g n .  (15) 
n=4 k = 3  m = 2  I = l  

Hence, in general, the non-linear equation may be replaced by 

m , - I  k - l  m-1 

+...+ cL . . .  C C (I)”l(m-I)”* . . . ( n - r ) Y L a l a m - l . . .  a , -rgn 
n = L r = L - 1  m = 2  I = l  

= 0, (16) 

where H and L refer to the highest and lowest orders of the non-linearity; p,, v,, etc, 
indicate the order of the derivative associated with each 6 in a non-linear term, and 
where the powers of ( - K )  are possibly absorbed in the constants c H , .  . . , c,, if they 
are not eliminated by the scaling in step (e). Since the summation in the first term 
starts from 1 and the summations in the non-linear terms start from L ( L  L 2 ) ,  we may 
take one or more of the coefficients a,, . . . , aj, . . . , aLWl arbitrary if P ( j )  = 0. On the 
other hand, if P ( j )  # 0 ( j  = 1 , .  . . , L -  l ) ,  then one or more of the above coefficients 
will be zero. For n 5 H, the summation over n in (16) may be deleted to obtain the 
generalised recursion relation 

n-1 k-1 m - l  

P( n ) ~ ,  + CH 1 . . . 1 1 (I)”!( m - I)’2. . . ( n  - r)’”Halam-, . . . a,- ,  
r = H - l  m=2 I = l  

fl-1 k - l  m - l  

+...+ c, . . .  C ( l ) Y l ( m - l ) ” 2  . . . (  n-r)”La,a,-l . . .  a,-,=O. 
r = L - l  m=2 I = 1  

(h) In this crucial step we show how to solve the recursion relation (17) by simple 
algebraic computation. In order to construct the general form of the coefficients a,, 
two straightforward techniques are available. 

( 1 )  We can compute the first few coefficients step by step, which allows us often 
to recognise the general structure for a,. For well known non-linear equations like 
the Kdv, mKdV, Burgers, the Tasso-Sharma-Olver (Olver 1977) and the non-linear 
Klein-Gordon (Whitham 1974) equations, this simple method is readily applicable 
(see Korpel 1978, Hereman et a1 1985, and the examples in 99 3.1, 3.3 and 3.4). 

( 2 )  For more complicated recursion relations, the general form of a, is no longer 
recognisable as such. 

Note, however, that a, will contain a polynomial in n of degree 

S = ( A  - H +  1 - A ) / ( H -  l ) ,  (18) 

with A = Z E l  pi and where A and H are the degrees of the polynomial P( n )  and the 
highest order of the non-linearity respectively. Now, each of the ( H  - 1)  summations 
appearing in (17) will raise the degree H6 of the product a,. . . by 1 .  Equating, 
therefore, the degree ( A  + 8 )  of P( n ) a ,  with the degree (HS + H - 1 + A )  of the highest 
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non-linear term, equation ( 18) readily follows. Furthermore, to derive additional 
information about the structure of a,, note that if aj = 0 ( j  = 1, . . . , L - l),  then ( n  - j )  
is a factor of a.. Also, we may observe that if P ( n )  = P ( - n ) ,  then ( n  + j )  is also a 
factor (see, for instance, the example in § 3.2) .  In addition, one can check that if the 
recursion relation (17) has only one non-linear term with a positive coefficient cH, then 
a ,  a (-l),, expressing alternation in sign. 

While at this point, it is intriguing to speculate on how we could derive an evolution 
or wave equation from a desired solution by examining the structure of a,. For instance, 
for a sech2-type solution, it is required that a, a n (see table 1); hence, S = 1. From 
(18), we thus obtain 

A = ( H  - 1)(1+ 6) + A =  2 ( H  - l ) + A .  (19) 

Realising that A is equal to the order of dispersion minus 1 for non-dissipative 
evolution equations, we have to combine, for the case A = 0, at least a quadratic, cubic 
and quartic non-linearity with a cubic, fifth-order and seventh-order dispersion, respec- 
tively, in the non-linear evolution equation to obtain a sech*-hump-like solution. This 
can be verified by examining the Kdv and its fifth- and seventh-order generalisations 
listed in table 1 (compare, for example, with Lax (1968)). 

Finally, to obtain any remaining constant coefficients in a,, we substitute the 
polynomial form for it in (17), apply the standard formulae for the sums of powers 
of positive integers (Spiegel 1968), and perform necessary straightforward computa- 
tions, as illustrated in the example in § 3.2.  

(i) In order to construct the solution 6, we next substitute the coefficients a, into 
(6). The obtained power series of decaying exponentials g ( t ) ,  given by (7), is conver- 
gent in the region t>  to, where to is a well defined positive number. 

However, due to the particular form of the power series, 6 can be written in closed 
form, which may be re-expanded in a convergent power series of a rising exponential 
g - ' ( t )  (which is a solution of the linear equation) in the region 5 < to in the case of 
non-dissipative equations. Since the closed form for (6' is continuous at 5 = to, this 
represents a valid solution over the entire region -a<  CO. 

For dissipative equations however, the re-expansion, though mathematically pos- 
sible, has no physical interpretation, since g - ' ( t )  is no longer a solution of the linear 
equation. However, as shown for the case of the Burgers equation (Hereman et al 
1985), the closed form of 6 yields the steady state, which is now achieved at t + CO, 

through a balance between a continuous supply of energy and the dissipation in the 
system, which is ultimately responsible for the boundedness of the closed form solution 
over the entire region ---CO < 5 < CD. 

The closed form for 6 in each case is parametrised by a constant, which leads to 
an arbitrary phase shift S. 
6) Finally, returning to the original dependent variable U and the independent 

variables x and t ,  an exact solitary wave solution of the non-linear PDE is obtained. 

3. Examples 

3.1. The modijied Korteweg-de Vries equation 

As a first example to demonstrate the method outlined in § 2 ,  we have chosen the well 
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known modified Korteweg-de Vries (“v) equation (Lamb 1980, Dodd et a1 1982) 

U, + .U2U, + Uj, = 0, (20) 

where CY is an arbitrary real number determined by the cubic non-linearity in a physical 
system. The subscripts in (20) refer to the partial derivatives of ~ ( x ,  t )  with respect 
to time t and space variable x. 

Introduction of the new independent variable 

5 = x - ut, 

where v is the constant anticipated velocity of the solitary wave, transforms the PDE 

(20) into an ODE for +(()& u ( x ,  t ) :  

(21) 

-U& + .+2+r + +3* = 0. 

-v4 + 42s = 0, (23) 

(22) 

We next integrate (22) once with respect to 5, to obtain 

where, for simplicity, we have not introduced the constant c1 mentioned in step (c) in 
0 2. 

The linear part of (23) has two real exponential solutions, denoted by exp[ * K ( U)(], 
where 

v > 0, (24) K = vl/’, 

indicating already that only solitary waves travelling to the right are possible. Note 
that for this example M = 2, N = 1 and K ,  = - K 2  = K ;  hence, 

gl ( t )  = l / g 2 ( t )  = exp(-Kt) a g(5). (25) 

We now normalise the non-linear equation (23) by a simple scaling transformation 

4 = ( 3 v / . ) ’ ” $  (26) 

to get 

- v i  + v i 3  + = 0. (27) 

To obtain a particular solution of (27), we substitute the series expansion 

into it and apply Cauchy’s rule for the triple product appearing in the cubic non- 
linearity. This yields the recursion relation 

where a, is arbitrary, but to be taken positive as we will see later, and with a 2 = 0 .  It 
may be readily verified that all a, with an even label will be zero. To compare with 
the theory in 0 2, for the present example H = L = 3, pK = v, = 0 and cH = cL = 4. 
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The recursion relation (29) is readily solved. By a step-by-step calculation of the 
first few coefficients, resulting in 

a3 = - ~ : / 2 ~ ,  (30) 

a5 = + a : / P ,  (31) 

a, = - ~ : / 2 ~ ,  (32) 

a,,. = 0, (33) 
(34) 

etc, it is easy to write down a non-trivial solution satisfying (29): 

n'= 1 , 2 , 3 , .  . . . - (-l)n'a;n'+1/23n', 
a2n'+1 - 

Note that an is a polynomial in n of degree S = 0, as confirmed by (18) since A = 2 
and H = 3 .  

Substituting (33) and (34) into (28) yields 

= 2JZag(t ) / ( l+  a2g2(t)), a = al/2JZ, (36) 
where we have made use of the identity (see e.g. Gradshteyn and Ryzhik 1980, p 21) 

Let us recall that the closed form (36) is obtained from the power series (35) in 
decaying exponentials g ( t )  = exp(-Kt). Since the expansion (35) is only convergent 
under the condition ag < 1, the closed form (36) at first sight seems to be onlymeaningful 
in the region t> to (to = (In a ) / K ) .  However, the closed form (36) can alternatively 
be expanded in a convergent power series in llag, under the condition a g >  1 (i.e. in 
the region t< to). Furthermore, taking the left and right limit for t +  to in (36) leads 
to the same value &. So, we may conclude that (36) is valid for the entire region 
--OO < 6 < +a. It is worthwhile mentioning at this point that by starting from rising 
exponentials g - ' ( t )  = exp(Kt) one would also arrive at the same closed form (36). 

Finally, we rescale 4 by (26) and return to the original variables using (21), (24) 
and (25), to obtain 

(38) 
where S (=ln l / a )  defines an arbitrary constant phase shift. 

We have thus constructed the well known solitary wave solution of the mKdV 

equation (20) (Bullough and Caudrey 1980, Dodd et al 1982). 
From a physical point of view, it is interesting to realise that a sech solution is 

only built up of odd harmonics of the fundamental function g, these obviously being 
the only ones to be generated by a cubic non-linearity. 

~ ( x ,  t )  = ( 6 ~ / a ) " ~  sech[fi(x - u t )  + SI, 

3.2. The KdV equation with additional jfth-order dispersion term 

An interesting example to illustrate the use of our technique in the case of multiple 
values of K and the consequent physical requirements of commensurability (see 
Hereman et a1 1985) was originally found in Kodama and Tanuiti (1978) and Yamamoto 
and Takizawa (1981). The latter authors showed that the non-linear fifth-order differen- 
tial equation 

(39) U, + auu, + p U 3 x  + u5x = 0 
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allows a sech4-type solitary wave solution, for well defined values of the constant real 
numbers a and p. 

It is our aim to solve equation (39) by our direct algebraic method, paying more 
attention to the mathematical details than to the physical interpretation, which has 
already been outlined in Hereman et al (1985). 

Performing steps (a) and (b) of the method described in Q 2 leads to 

p425+ 4 4 5  =o, (40) 
where we neglected the integration constant to look only for solutions without a 
constant term c1 in their expansion into real exponentials. 

Clearly, the linear part of (40) (i.e. for a = 0) allows real exponential solutions 
exp[*K(v)t] for two different values K, and K 2 ,  namely 

K I J  = { t [ - P  * (p2+4v)  1) 9 (41) 

P < O ,  -$'< V < 0, (42) 

g,,2(5) exp(-K,,20. (43) 

1 / 2  1/2 

with 

as sufficient conditions. Hence, N = 2 and we define 

Anticipating, now, that the final solution may be built up as a sum of powers of 
only one decaying exponential 

g(5) A exp(-Kt), (44) 

K = Kl/  M ,  = K2/ M2.  (45) 

we look for two integers M,,2 satisfying 

For computational convenience that will become clear later, we rescale the 
coefficients in (40) by 

4 = - ( ~ / 1 8 a ) $  (46) 
and, thereafter, substitute the expansion 

m 

i= C angn 
n = l  

into the rescaled non-linear equation. This yields 
m 00 n - l  

n = l  36 n = 2  1 = 1  
c (n4K4+n2pK2-v)angn--  c alan-lg"=O, 

(47) 

where use has been made of Cauchy's rule for the double product appearing in 4'. 
Since K # Kl  # K2, it follows from (48) with (41) that a, = 0. (The degenerate case 

KI = K,, i.e. 4v = -p2,  is still under investigation.) For a non-trivial solution built up 
of the mixing of the two decaying exponentials g1,2 as in (43), we require two coefficients 
a,, to be arbitrary. An obvious choice is a2 and a3, so that, from (48), the conditions 

1 6 K 4 + 4 P K 2 -  v = O ,  (49) 
81 K4+9PK2 - v = 0, (50) 

must be fulfilled. Solving for U and K in terms of p, we obtain 

v = -36p2/ 169, 
K = ( 

13 



A direct method of constructing solitary waves 61 7 

Hence, using (51) and (52) in (41), it follows from (45) that 

M, = 2, M2 = 3, (53) 

Kl = 2( - & P ) l / 2 ,  K2 = 3( -&P) ' l2 .  (54) 

as expected on the basis of our choice (8, = g2, g, = g3). Hence 

Examining (51) and (52), we note that the conditions on p and v as stated in (42) are 
indeed fulfilled. 

Simplifying (48) by using (51) and (52), we obtain the recursion relation 

justifying the scale in (46). Here again one can calculate the first few coefficients a, 
from (55), leading to 

~ 4 =  - ~ : / 8 4 ,  (56) 

= - ~ 2 ~ 3 /  168, (57) 

~ 6 =  all36288 - ~ : / 8 6 4 ,  (58) 
etc, but it is very hard to speculate on what the explicit form of a, will be. Therefore, 
we calculate the degree S of the polynomial in a, using (18), and we use the method 
described in point (2) of step (h) in § 2, together with the symmetry considerations 
cited there. For our example A = 4 and H = 2, so S = 3. We remark that regarding 
(56)-(58) one may expect an alternation in sign in successive a, if a2 and a3 have 
opposite signs. Furthermore, since a, = 0, n - 1 is a factor in a,, likewise n + 1 ,  the 
remaining factor being nothing else than n itself. 

Finally, note that if a, is a solution of (55) then ana", with a > 0 and constant, is 
also a solution of the same recursion relation. Taking all this into account, the form 
of a, must be 

U, = b ( - l ) " + ' n ( n  - l ) (n  + 1 ) ~ " .  (59) 
Now, the constants a and b, which may both depend on a2 and a3, must be 

determined. In order to calculate b we substitute (59) into (55) and we apply the 
formulae. (Spiegel 1968) 

n-1  ( n - l ) n  
i = l  2 '  

S , = c  i=- 

( n  - l)n(2n - 1) n-1  
Sz= C i 2 =  

i = l  6 7 

n-1  .4 - ( n  - l )n (2n-1 ) (3n2-3n  - 1) 
i = l  

sq= I - 
30 9 

n-1  ( n  - 1)2n2(2n2-2n - 1) S5= i'= 
i = l  12 , 
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for the sums of powers of the first ( n  - 1 )  positive integers. After straightforward 
algebra we obtain b = 140. Then a = -a3/4a2 > 0 follows readily from (59) expressed 
for n = 2 and n = 3, provided 

a: = - y a : .  (66) 

After substitution of 

a,, = 14O(-l)"+'n(n2-1)an (67) 

into (47) and application of the formula (Gradshteyn and Ryzhik 1980) for the binomial 
series 

m X2 
( 1 + x ) 4 - 6  n = 2  (-l)"n(n'-l)x", 1x1 < 1 ,  

6 can be re-expressed in closed form: 

6 = - ~ 4 0 ( a g ) ~ / ( 1 +  ug14. 

For the same reasons as in 43.1 one can overcome restraints 
region for (69), making this closed form valid for --CO < .$ < +a. 

(69) 

on the convergence 

Finally, returning to the original variables, using (44), (46), (51 )  and (52), we obtain 

36p2 
u(x ,  t )  = 4 ( x  - ut) = -- 1 0 5 p 2 s e c h 4 [ 1 ( * ) 1 ' 2 ( x + ~ t )  169a 2 13 + S I ,  (70) 

with S (=$In a- ' )  being an arbitrary phase shift. Equation (70) is the exact solution 
of (39) as obtained before by Yamamoto and Takizawa (1981). 

While it was practical to calculate the solution (70) using a series expansion in a 
single exponential function g (the same closed form could have been obtained from 
an expansion in g-'), in retrospect, one can expand (70) as a double series in g, and 
g,. Indeed, note that (47) with (67) and a = -a3/4a2 may be re-expressed as 

m o o  

6~s) = 2 2 an,n2gY1( t )g;2(0 ,  (n , ,  n2) # (O,O), (71)  
n , = O  n2=0 

with g, = g 2 ,  g2 = g 3  and a,, = a2, a,, = a3, a,, = a4 = -a:/84, a,, = ai136 288, a,, = as = 
-a2u3/ 168, a30 = -a:/864, etc, clearly demonstrating that the final solution is represent- 
able in terms of the harmonics and cross-couplings of the two (decaying) exponentials 
g1 and g2. 

3.3. The non-linear Klein- Gordon equation 

As an example of a non-linear wave equation let us consider the u4 equation of particle 
physics (Dodd et a1 1984, Narita 1984), commonly called the non-linear Klein-Gordon 
equation 

U2, - u2x + au + pu3 = 0, (72) 

where the constants a and p have opposite signs. We have chosen this equation since 
it has a constant term in the expansion of its kink-type solution into a power series in 
real exponentials. 

As before we introduce the new variable .$=x-ut in (72), to obtain 

(U'- 1)4,(+ ~ r 4 + p 4 ~  =o. (73)  
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In the most general case the solution of (73) can be written as 

4 = c1+ 4, (74) 

(U’- 1)42< + ( a  +3pc:)6 + 3pc162+  p i ’ +  c1( a + pc:, = 0. 

where c, is a constant. Hence, 4 has to satisfy 

(75) 

Like non-dissipative evolution equations, the linear part of (75) has exponential 
solutions exp[*K(v)(], if 

c1( a + pc:,  = 0. 

K = [ a / ( l - v  11 1 

(76) 

(77) 

For c, = 0 we find 
2 1/2 

from which it is clear that for a > 0, v 2  < 1 and for a > 0, U’ > 1 .  
For c: = -a lp,  requiring that a and /3 have opposite signs, 

K = [2a / (  U’ - 1)]’12, (78) 
so that a > 0 implies U’ > 1 .  

For the first case, we perform the scaling 

4 = 4 =  A *( - a/P )1’*4, (79) 
which is only possible if a and p have opposite signs. Next, we use (44), (47) and 
(77) to get the recursion relation 

n-1  m-1 

( n 2 - l ) a , +  a I a m - I a , - m = ~ ,  n 3 3, a,  arbitrary, a2 = 0, 
m = 2  I = 1  

which is identical to the recursion relation (29) for the mKdV equation. Hence, 

so that we re-obtain the well known solitary wave solution (Narita 1984) 

u ( x ,  t )  = *(-2a/p)”’  sech{[a/(l-  v ’ ) ] ” ’ ( x -  vt)+6},  (82) 
with 6 =In a- ’ .  

For the second case, where 

c1 = *(-CY/p)’/’, (83) 
we again use the scale transformation (79), and we substitute the series expansion for 
4 into the resulting equation. This yields 

n-1 n-1  m-1 

I = l  m = 2  I = 1  
(n2- l )a ,F$  2 aIam-la,-,=~, n 3 3 ,  (84) 

with a, arbitrary and a2 = a:/2. The solution of (84) is easily found to be proportional 
to a constant E, explicitly 

a, = *2(fa1)” 

4 = Fag), a = ;a, > 0. 

so that 
.. 
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Again it can be shown that the closed form (86) is valid over the entire region 

For a physical solution we take the plus sign in (86); this means we have chosen 
opposite signs for cl in (83)  and the scaling in (79). Returning to the original variables, 
we can express the final result in the form 

-co<(<cQ. 

u ( x ,  t )  = * ( -a /p ) ' ' *  t a n h { [ c r / 2 ( ~ ~ - 1 ) ] ~ ' ~ ( x - ~ t ) + S } ,  (87) 
with S = + I n  a- ' .  Equation (87) is nothing else than the tanh-type kink (Dodd et a1 
1982, Narita 1984). 

We may conclude that only slightly modifying our technique enables us to construct 
two different particular exact solutions of the non-linear Klein-Gordon equation (72). 

3.4. The sine-Gordon equation 

As a final example we focus on the single sine-Gordon equation 

uz7 - u2,, = sin U, (88) 
arising in a variety of physical and mathematical contexts (Newel1 1983). The (non-) 
linear approximation to (88) is the (non-)linear Klein-Gordon equation. 

The coordinate transformation T = x + t, 7 = x - t modifies (88) to a more suitable 
form for our purpose, i.e. 

U,, = sin U, (89) 

In order to avoid dealing with the transcendental non-linearity sin U, we introduce, 
for u ( x ,  t )  A U (  T, 7). 

after Rosales (1978), two new variables 

@ = ux, (90)  

* = c o s u - l .  (91) 

ax* - @  -@* = 0, (92)  
2 9  + 9 2  + @; = 0.  (93)  

Hence, (89) can be replaced by the following set of non-linear coupled equations: 

Now, we show how our solution technique applies to this coupled system. As 
before we seek stationary travelling wave solutions of (92)-(93) in the form +(t)' 
@(x, t ) ,  $(&) = "(x, t ) ,  with 5 = x - ut. Upon substitution of the expansions of the 
normalised functions 

with U < 0, we obtain the following infinite set of coupled recursion relations: 
n - l  

( n 2 - l ) a n -  c a/bn-l=O, n 2 2, a ,  arbitrary, (96) 
/ = l  

n-1 n - l  

l = 1  I =  1 
2bn + c bibn-,+ 1 I(n - l)alan-l = 0, n L 2, b, = 0, (97) 
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where we have used the relation U = - l / k 2  (obtained from the linear part of (92)) to 
simplify. By an iterative calculation of the first few coefficients, resulting in a2 = a4 = 
a6 = . . . = 0, a3 = - ~ : / 2 ~ ,  a5 = ~ : / 2 ~ ,  etc, it is easy to write down a non-trivial expression 
for a, in the form 

a2,, = 0, n ' s  1. (99) 

One can calculate the b, in a similar way. 

closed form, 
Returning to (94) and proceeding as in the first example, we easily find q5 in its 

q5 = 4kag/[ l+ (ag)'I, a = a , /4> 0. (100) 

After substituting (100) into (90) and integrating, we finally obtain the kink-profile 
solution (Lamb 1980, Poppe 1983) 

u ( x ,  t )  = *4 tan-'{exp[(x - ut)/&+ SI}, (101) 

for k > 0 and U < 0. Other kink and antikink solutions (not listed in table l ) ,  arising 
from different combinations of the signs of k and U, can be derived in a similar way 
(cf Lamb 1980). 

Other coupled systems of evolution equations (Kupershmidt 1984) or coupled wave 
equations (e.g. the Maxwell-Bloch equations (Dodd et al 1982)) may be found solvable 
by our method. The results for a coupled system of Kdv equations (Hirota and Satsuma 
1981, Satsuma and Hirota 1982) are listed in table 1. Detailed calculations will be 
presented elsewhere (Banerjee and Hereman 1985). 

4. Stationary solutions of other non-linear evolution/wave equations 

We have used our method to find single solitary wave solutions of a variety of non-linear 
evolution and wave equations. In table 1, we give a survey of these equations, together 
with the corresponding recursion relations and the final physically relevant solutions. 
For most cases, except the Kdv, the Klein-Gordon and the second-order Benjamin-Ono 
equation, we did not incorporate c, in the solution, only to avoid unnecessary mathe- 
matical computations. The physical details on the construction of a (general) solitary 
wave solution of the Kdv equation, the Burgers equation and the Kdv equation with 
an additional fifth-order dispersion term are given by Hereman et al (1985). 

For dissipative equations, e.g. the Burgers equation (Whitham 1974), where only 
one type of solution for the linear equation exists, our technique is still applicable in 
a straightforward way, though the physical interpretation of the closed form solution, 
in terms of mixing and harmonics, is considerably different. 

The regularised long wave (RLW) and the time-regularised long wave (TRLW) 

equations (Benjamin et a1 1972, Jeffrey 1978) can be dealt with in a similar way to the 
Kdv equation itself. The Sharma-Tasso-Olver (STO) equation which appeared in 
Sharma and Tasso (19771, Olver (1977) and Verheest and Hereman (1982), had (to 
our knowledge) not been exactly solved before. 

For comparison of our technique with standard methods, particular examples of 
fifth-order generalised Kdv equations may be found in Lax (1968), Sawada and Kotera 
(1974), Ito (1980), Ablowitz et a1 (1974), Fordy and Gibbons (1980) and many others. 
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Table 1. Evolution and wave equations solved by the direct algebraic method. 

wsen c 1  1 1 
Jose#r-tgri (TPLYI 

" . U  '3Uu * U  
t X  X X Z t ' O  

Sham-Tasso-Olver (SUI 

" t + 3 u ; + 3 " - " x + 3 w z x * " s ~  = o  

order dispersion term 

Ut f mux f eu31 * Usr = 0 

- 
." = " 0 

- 

0 n ' "  

0 
" = "  

0 
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The first three papers listed here also discuss two particular examples of the seventh- 
order generalised Kdv equations mentioned in table 1. The special and drastically 
simplified version of a fifth-order dispersive equation was solved by Van Immerzeele 
(1983) using a preliminary version of our method. The Kadomtsev-Petviashvili (KP) 

and the two-dimensional Kdv equations can be found in e.g. Kadomtsev and Petviashvili 
(1970), Satsuma (1976) and Freeman (1980). The Boussinesq equation (BE) is discussed 
by many authors, including Whitham (1974) and Scott et a1 (1973). Details on the 
‘good’ BE, the improved BE and the modified improved BE, respectively, may be obtained 
from McKean (1981), Iskandar and Jain (1980) and Bogolubsky (1977). Note that 
the recursion relations for all the mentioned BES (except the modified improved one) 
and the KP equation are exactly the same as the recursion relation corresponding to 
the Kdv equation, and that the ones corresponding to the mKdV and the modified 
improved BE are identical. 

In addition to evolution and wave equations, our technique can also be applied to 
other non-linear PDES. For instance, for the Thomas equation (Rosales 1978, Roy 
Chowdhury and Paul 1984), our method yields a In-type solution. For a second-order 
Benjamin-Ono equation (Korpel and Banerjee 1984) it leads to a well-type solution; 
for a mKdV with an additional first-order dispersion term (Fung and Au 1984) we 
obtain a cosech solution. Detailed calculations for the last three equations can be 
found in Meerpoel (1985). A model equation for shallow water waves (Hirota and 
Satsuma 1976, Hirota and Ramani 1980) has also been successfully solved by our 
method. In table 1 we list its potential form (obtained after integration and scaling) 
with a corresponding solution. 

Furthermore, coupled systems can also be treated by our method. As we have seen 
in § 3, the sine-Gordon equation and perhaps other equations with transcendental 
non-linearities (e.g. Liouville’s equation (Bullough and Caudrey 1980), Mikhailov’s 
equations (Hirota and Ramani 19801, double sine-Gordon equations (Bullough and 
Caudrey 1980)), which appear not to be solvable as they stand, may be transformed 
into a solvable coupled set of non-linear equations. As a final example, we list a 
coupled system of Kdv equations (Hirota and Satsuma 1981) and a particular solution. 

5. Construction of N-solitary wave solution-omparison with other methods 

In this section, we outline how our method can be extended in order to construct 
multiple solitary wave solutions, taking the Kdv equation as an example. Since we are 
looking for solutions of N solitons, each moving with a different velocity and having 
different amplitudes and widths in general, we can no longer choose a single travelling 
frame of reference and integrate. We therefore start from 

(102) U, + auu, + u3x = 0, 

with a an arbitrary real number. 
The linear part (found by setting a = 0) admits a solution of the form 

N 

U(’)= c c,g,(x, t ) ,  g, A a, exp( k,x - U,?), 
t = l  

where c , ( k , )  and a, are constants, and with the dispersion law 

w ,  = k l ,  i = 1, . . * , N. 
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It will turn out later that the significance of there existing N linear solutions, rather 
than one as before, lies in the fact that ultimately the evolution by mixing results in 
N solitons. The superscript ( 1 )  in (103) refers to the finite single sum over i, i.e. the 
non-mixed terms. Higher-order mixing products will subsequently be denoted by U('), 
u ( ~ ' ,  etc. Note that in Rosales (1978) and Wadati and Sawada (1980a), the index would 
refer to a term in the formal perturbation expansion. 

For the non-linear term auu, in (102) we write 

leading to a double sum 

similar to the non-linear term(s) in (16) for a quadratic non-linearity and for n = 2. 

of the linear operator 
The analogue of P(2) in the linear part of (16), in our case, results from the action 

L.  4 a./at + a!/al (107) 

on 
N N  

= 2 clJglgJ, (108) 
I = l  ] = I  

so that, using (104), 

N N  

LU'2' = C L(Ui @I, ki f kj )C&ig, 
I - 1  ] = I  

N N  .. 
= [ - ( ~ , + w ~ ) + ( k ~ + k , ) ~ ] c ~ g ~ g ~  

1 = 1  j = 1  

N N  

= 3 2 C kikj( ki + k,) cijgig, 
! = I  j = l  

must replace the linear term P(2)a2g2 in (16). 
To arrive at the proper closed form for the N-soliton solution we equate the 

coefficients of terms that exhibit identical sequences of indices. ( The physical reason 
for doing so in exactly this way is still under investigation, although we believe that 
it has to do with the symmetry properties of the asymptotic behaviour of the soliton 
sequence.) Proceeding in that manner, starting from 

Lu'2'++(t((x')u(')+ u(1)u(x1') = 0, (110) 

i , j = l ,  ..., N, ( 1 1 1 )  c IJ =-La 6 9 

c, = kl, i = l ,  . . . ,  N. (112) 

and using (106) and (109), we readily obtain 

for the convenient choice 

It should be clear that from our physical point of view the double sum in (108) 
contains all possible mixing contributions between (kl, U , )  and (k,, U,) for i, j = 1, . . . , N. 
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In a similar way, the analogues of the linear and non-linear terms in (16) become, 
respectively, 

N N  N 
Lu(") = C C . . .  C L ( w i + w , +  . . .+ w, ,k i+k ,+  . . .+ k,)c,.,,,,gigj . . . g ,  

i = l j = 1  , = I  - (113)  
n summations 

and 
a n - l  - 
2 I = 1  

uil'(ki ,  kj, . . . , kp)u(n- ' ) (kq ,  k , .  . . , k, )  - - 
1 arguments n - 1 arguments 

+ U(')( ki, k,, . . . , kp)uV- ' ) (  k,, k, . . . , k, ) .  (114) 

The sum of (113)  and (114) has to equal zero, from which c , , , , ,~  can be determined 
following the same index ordering procedure as used before. 

After some algebra (Rosales 1978, Wadati and Sawada 1980a) one finds 

( k i+  k, +. , .+ k,+ k,)  
( ki + kj ) (  kj + kk ) . . . ( k ,  + k, )  ' 

n - l  

i , j  , . . . ,  s = l ,  . . . ,  N. ( 1 1 5 )  

Hence, like the nth harmonic used in the one-soliton case, the n-fold mixing contribu- 
tion will be written as 

Analogous to the way we build up a single soliton from simple harmonics in (6), 
we build up the N-soliton sequence from all the higher-order mixing terms. Hence, 
the solution is 

00 

u(x ,  t )  = d n ) ,  
n = l  

which may be re-expressed, using ( 1 1 5 )  and (116), as 

(k, + kj + . . . + k, )  
X gigj.  . . g ,  + . . . . 

( k , + k j ) ( k j + k k )  . . . (  k , + k , )  

It can now be shown (Wadati and Sawada 1980a) that (118) can be written in 

(119) 

closed form as 

u ( x ,  t )  = ( 12/a)(d2/dx2) log det( I + B ) ,  

where I refers to the N x N identity matrix and where the N x N matrix B has elements 

a (ala,  
'I 6 ( k , + k I )  

B =-- exp:[(k,+ k , ) x - ( w , + w , ) t ] .  

The solution ( 1  19) is identical to the discrete N-soliton solution constructed using 
Hirota's bilinear formalism (Hirota 197 1 )  or the inverse scattering technique (Gardner 
et a1 1967). A Fourier integral representation of the solution may be found in Rosales' 
paper (Rosales 1978). 
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The N-soliton solutions of other evolutions and wave equations may be obtained 
in a similar way. 

6. Discussion 

One might wonder if solutions other than those expressible in a series expansion of 
real exponentials can be obtained with our method. In particular, we think of the 
algebraic solution of the Benjamin-Ono equation (Kodama er a1 1982). Furthermore, 
it also seems interesting to try to treat difference-differential equations such as the 
equations of motion of an exponential lattice (i.e. Toda lattice (Toda 1981)) with our 
approach. 

At the present stage, we have, concurrently with our physical interpretation, pro- 
vided a formalism for systematically solving recurrence relations leading to single 
solitary wave solutions. Although our physical picture of N-soliton evolutian is the 
same as in the one-soliton case, a generalisation of the formalism is still lacking here. 
We are also investigating how our method must be modified to treat complex, higher- 
dimensional or vector non-linear evolution and wave equations, or PDES of a different 
kind. 
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